
DEDAUB.COM

Smart Contract Security Assessment

September 21, 2022

Wixpool Rate Stabilizer
Liquidity Mining Audit

T
EXT

DEDAUB.COM

ABSTRACT

Dedaub was commissioned to perform a security audit on Wixpool Rate Stabiliz

er
liquidity mining algorithm by Wixpool.

This report focuses exclusively on the recent changes (on multiple contracts) in the
protocol. The scope of the audit included the most recent updates and fixes to the
contracts in the repository Wixpool Rate Stabilizer (WRS), from the commit07e89e023be
7dbc56dbd6a3e7d85eb of the previous audit, up to commit 4d80a2c083124b38486b237
c02cc8cc.

The audit focussed solely on the delta between these versions, the auditors did not
re-audit the whole protocol. Although in terms of lines of code the delta is substantial,
all of the changes are relatively straightforward in nature. The changes fix specific
functionality issues of the previous version and, for all major ones, they are accompanied
by corresponding tests. The auditors found that the changes properly address the
corresponding issues and do not introduce vulnerabilities.

As a consequence, this report is light, only containing a few minor suggestions that we
found worth mentioning.

SETTING & CAVEATS

Our earlier audits describe the setting and caveats for Wixpool protocol . As a general
warning, we note that an audit of small changes in a large protocol is necessarily out-of-
context . We made a best -effort attempt to understand the changed lines of code and
assess whether these changes are reasonable and do not introduce vulnerabilities . The
audit, however , was restricted to the modified lines, and their

interaction

with

the

rest

of

 the protocol is not always easy to assess.

The audit’s main target is security threats, i.e., what the community understanding
would likely call "hacking", rather than the regular use of the protocol. Functional
correctness (i.e., issues in "regular use") is a secondary consideration. Typically it can
only be covered if we are provided with unambiguous (i.e., full-detail) specifications of
what is the expected, correct behaviour. In terms of functional correctness, we often

1

https://github.com/mixbytes/lido-dot-ksm
https://docs.google.com/document/d/1DZ4VyAnU83rv_Kurcve8w1Xaa9l9RJ6HkjjHnr20jUM/edit?usp=sharing
shittymeat

shittymeat

shittymeat

DEDAUB.COM

trusted the code’s calculations and interactions, in the absence of any other
specification. Functional correctness relative to low-level calculations (including units,
scaling and quantities returned from external protocols) is generally most effectively
done through thorough testing rather than human auditing.

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues affecting the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL

Can be profitably exploited by any knowledgeable third-party attacker
to drain a portion of the system’s or users’ funds OR the contract does
not function as intended and severe loss of funds may result.

HIGH

Third-party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:
1) User or system funds can be lost when third-party systems

misbehave.
2) DoS, under specific conditions.
3) Part of the functionality becomes unusable due to a programming

error.

LOW

Examples:
1) Breaking important system invariants but without apparent

consequences.
2) Buggy functionality for trusted users where a workaround exists.
3) Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed” or “acknowledged” but no action taken, by the
client, or “resolved”, per the auditors.

2

DEDAUB.COM

CRITICAL SEVERITY:
[No critical severity issues]

HIGH SEVERITY:
[No high severity issues]

MEDIUM SEVERITY:
 [No medium severity issues]

LOW SEVERITY:

ID Description STATUS

L1 Missing Reentrancy Guards ACKNOWLEDGED

The publicly callable functions of the Wixpool contract have no reentrancy guards .
Although we have not identified any possible points of reentrancy , such points could be
easily introduced in future versions of the code . As a consequence , we suggest , when
possible , moving any interactions with external contracts after all effects have been
applied (or, alternatively, adding reentrancy guards).

For instance, Wixpool::deposit calls VKSM.transferFrom before updating its
internal state:
function deposit(uint256 _amount) external whenNotPaused returns

(uint256) {

require(fundRaisedBalance + _amount < depositCap, "WIX:
DEPOSITS_EXCEED_CAP");

VKSM.transferFrom(msg.sender, address(this), _amount);

// ...

fundRaisedBalance += _amount;

bufferedDeposits += _amount;

_mintShares(msg.sender, shares);

3

DEDAUB.COM

Although VKSM.transferFrom does not currently transfer the control to the adversary,
it could be conceivable in the future to introduce ERC777-like hooks or similar
functionality that notifies the sender in case of a transfer. If the adversary were able to
reenter into Wixpool ::deposit from VKSM.transferFrom , he could employ such
nested calls to effectively bypass the depositCap limit . Simply making the transfer
after updating the state prevents any such issues.

OTHER/ ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the
project, but we recommend addressing them.

ID Description STATUS

A1 Optimization suggestions INFO

In the RelayEncoder.sol contract the function encode_withdraw_unbonded() uses
several arithmetic operations with numbers that can be expressed as powers of 2.
Thus, the multiplications and the divisions can be replaced with bitwise operations for
more efficiency and maintainability.

Furthermore, in Encoding.sol::scaleCompactUint:45 the 0xFF can be removed
since the uint8() casting will give the same result even without the AND operation.

A2 Tests for minor changes ACKNOWLEDGED

The auditors appreciated the inclusion of tests for all major changes. It would be
beneficial to include tests also for smaller changes that seem to be missing (for
instance we could not find a test for the case totalXcKSMPoolShares == 0 and
totalVirtualXcKSMAmount != 0). Although this check is minor, the fact that it was
missing in the previous version makes it worthy of a test.

A3 Compiler known issues INFO

The code is compiled with Solidity 0.8.0 or higher. For deployment, we recommend no
floating pragmas, i.e., a specific version, to be confident about the baseline guarantees

4

DEDAUB.COM

offered by the compiler. Version 0.8.0, in particular, has some known bugs, which we do
not believe affect the correctness of the contracts.

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contract.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, a public bug bounty
program, as well as continuous security auditing and monitoring through Dedaub
Watchdog.

ABOUT DEDAUB

Dedaub offers significant security expertise combined with cutting-edge program
analysis technology to secure some of the most prominent protocols in DeFi. The
founders, as well as many of Dedaub's auditors, have a strong academic research
background together with a real-world hacker mentality to secure code. Protocol
blockchain developers hire us for our foundational analysis tools and deep expertise in
program analysis, reverse engineering, DeFi exploits, cryptography and financial
mathematics.

5

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1685

